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Abstract-The present investigation includes a theoretical study of simultaneous heat and mass transfer 
in a sphere in presence of phase and chemical transformation. The transfer potentials are determined 
under the influence of most general type of boundary conditions. Approximate solutions of these transfer 
potentials have also been determined. The whole analysis has been presented in the dimensionless form 

with the help of similarity criteria. 

NOMENCLATURE 

4 coefficient of diffusivity; 

Ai, Bi, dimensionless known thermophysical 
coefficients; 

A defined by equation (35a); 
A;: B,, defined by equation (22a) and (22b); 

:nj, 

specific content; 
defined by equation (35b); 

Fo, Fourier number; 
J(X), given functions; 

.i”i3 constant values of the given functions; 
k, reaction constant; 
n, order of reaction; 

pnj3 defined by equation (18); 
Qnj, defined by equation (19); 

Q d> heat of reaction; 

z, 
space variable; 
radius of the sphere; 

9 Laplace parameter; 
t, time variable; 
T, temperature distribution; 
W, concentration of the matter; 
W, dimensionless simplex; 
J4 dimensionless space variable. 

Greek symbols 

pm, v,, characteristic root defined by (17) and (27); 

II, _“’ defined by equation (21); 

63 Laplace transform of 0, ; 
E, phase criterion; 

specific heat of evaporation; 
Soret coefficient. 

Subscripts 

4, heat; 

d”:, 

associated matter; 
solid phase; 

d 2, gaseous products of decomposition. 

Superscript 

o, characteristic entity. 

Suffixes 

1, 1, 2, 3,4; 
1. 1.2; 
m, 1,2,..., co; 
% 1,2, . . ) ‘xl. 

INTRODUCXION 

THE PRESENT paper deals with a theoretical study of simultaneous heat and mass transfer in a spherical capillary 
porous body in presence of phase and chemical transformation. Such type of phenomena occurs frequently 
during the kilning of ceramic ware and also kaoling kilning. 

Thermal effects become apparent when a majority of mineral substances, etc. are treated thermally in different 
temperature ranges. Since the process of transfer becomes very complicated, much attention has not been paid 
to it by researchers in the field. However, the theoretical investigation carried out by Lebedev [l], Luikov and 
Mikhailov [Z] on the one hand and the experimental work carried out by Ralko [3] on the other are noteworthy. 
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In the text of [2] the authors have studied simultaneous heat- and mass-transfer phenomena in an infinite 
plate in presence of phase and chemical transformation under the convective type of interaction law between 
the body surface and the gaseous medium. Previously the authors [4] considered the same system under the 
influence of the most generalized boundary conditions. The initial distributions of the transfer potentials and the 
chemical reactions have also been considered to be of the most general type. 

The present work is in continuation of the author’s previous work. Expressions for the transfer potentials are 
obtained in a sphere for the general type of chemical reaction and arbitrary initial distributions. The expressions 
are further simplified for a chemical reaction of the first order and for uniform initial distributions. 

STATEMENT OF THE PROBLEM 

The internal heat and mass exchange for unidimensional bodies in the form of a sphere may be described by 
the system of differential equations. 

(1) 

and 

(3) 

where T = T(r, t) and W = W(r, t) are the potential distributions of heat and matter respectively. 
In the thermal decomposition of the body, the rate of chemical reaction depends upon the concentration of the 

reacting components and the products of decomposition. The rate of reaction to a first approximation is a 
function of the concentration of the reactants and thus 

aw,, -= -vwd,) at 
where fi( Wd,) is some given function. 

The system of differential equations (l)-(4) is transformed by using dimensionless variables 

and 

and similarity criteria: 

(i) The Luikov criteria of the field of bound matter and the products of decomposition in relation to 
temperature field 

Lu, ZZ am and LUd = adl 
% a4 

(ii) The Posnov criteria for bound matter and the gaseous products of decomposition 

(iii) The Kossovich criteria for the bound matter and gaseous products of decomposition 

&_, =f!?! 
m and K. 

d 
_ Qd w: 

c, T” cg T” 

(iv) The Hess criterion 

and the dimensionless simplex 

Ge = z (W’,J”-i 
1 

w, = W,q/W&. 

The system of differential equations (l)-(4) now becomes 

abe,) at.4) 
,--KOd- 

aF0 dFo ’ 
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(6) 

and 

wd -= 
aF0 

Lu a2wd 
*x2- 

+Ludpnd!!3$LLLW 
w, aF0 

(7) 

2 = -L&&f(&), 0~ x < 1 and Fo>O. (8) 

The boundary conditions for the system of differential equations (5)-(8) can be defined as 

81,,(1,Fo)+AlBl(l,Fo)+B1e2(lr Fo) = h(Fo) (9) 

~2,,(LF4+~2QA1, Fo)+B,Q2UrFo) = 42(F4 (10) 

&,,(l, Fo)+A3fkx(L Fo)+B3&(lr Fo) = 43bw (11) 

and 
t&JO, Fo) = 0 (12) 

where Ai and Bi (i = 1,2,3) are aggregates of known thermophysical coefficients in the dimensionless forms and 
4i(FO), i = 1,2,3 are prescribed fluxes which are to be determined by the experiments. Subscript “,x1’ stands for 
the partial differentiation with respect to x. 

For a complete statement, we shall assume that the transfer potentials are arbitrary functions of space 
coordinate at the initial moment of time, i.e. 

&(X,0) = A(X); (13) 

where J(x) are some known functions in the dimensionless form. 

SOLUTION OF THE PROBLEM 

The set of differential equations (5)-(7) through the boundary and initial conditions (9)-(13) are solved by the 
application of Laplace transform technique. The solutions under the Laplace transform can be put as 

81(x, s) = 
1 

x(QlPz-Pl Q2)s 

and 

x {[~(QI sinh~2(Js)x-Q2sinh~,(Js)x)~,(s)-(P~ sinh 02(Js)x - P2 sinh ~t(Js)x)$~(s)] -(u! - u$)- r 
x [(Sr -S2)(Pl sinhu,(Js)x-Pz sinhur(Js)x)-((RI -R2)(Q1 sinh u,(Js)x-Q2 sinh ur(Js)x)] 

+ (l/s&)C(F> x(l)+ B2 FU))(P 1 sinhu2(Js)x-P2sinhu1(Js)x)+Br F(1,) 

x (Q2sinhut(Js)x-Qr sinhu2(Js)x)]} 

1 
+ 

ur u&J: -t&2x s 
X NS)[uAJs)sinh(x- &r&/s)- s(Js)sinh(x-5)a2(Js)] d5. (14) 
n 

672(x, s) = eKO,X(QI 1; _pl Q2js {[s(Q1(1 -u<)sinh udJs)x-Qdl -u?)sinhudJs)x)&(s)] 

-(P,(1-u~)sinhu2(~s)x-P2(1-u~)sinhu,(~s)x)~~(s)+(u~-u~)~’ 

x [(S~-S2)(P,(1-u~)sinhu2(~s)x-P2(l-u~)sinhu~(~s)x) 

-(RI -R2)(Ql(l -u$sinh u2(Js)x-Qz(l -u:)sinh ur(Js)x)] +(l/eKo,,,.) 

x [(1-u~)(P,sinhu2(~s)x-P2(l-u~)sinhu~(~s)x)(F,x(l)+B2F(1)) 

+Bl F(l)(Q,(l -uf)sinh uI(Js)x-Q1(l -vi) sinh u,(Js)x)]} 

$$ sinh(x- &(Js) 
1 

1-u: 
- ~ sinh(x- Su,(Js) 

u2( Js) 
dt + & F(x), (1% 

In 

uj’=; l+EKo,Pn.+&)+(-l)$(l+EKo.P%+&~-+-]} 
i( 
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and the other functions are defined as 

R(X) = s/Lu,[sJ;(X)+LLl~KO~GP.~~(o~)]-.~f;ll(.Y)-~2f;’(.Y)+KO,~~~(.Y)+2Ko,f~(s) 

- LudGeK~~sf~(n~)-ZLu~GeKo~~'(H~), 

F(x) = -.uf(x)+~K~,~~;(x)-~u~GeK~~,~(~~), 

pj= -1+/l,+(I-C;) 
i 

-$ sinh uj(,/s)+ Uj(Js) cash uj(JS) 
m 

Q~= (AZ+g) uj(Js) cash Lo + ( g-Al)sinhtij(Js), (82 - 1) 

s 

1 

Rj= R(r. s) sinh(1 - <)Uj(Js)d< + R([, S) cosh(l-<)Uj(Js)dS 
0 

and 

R(<, s) sinh(1 - <)L’j(Js)d< 

+(!g+a,) j; R(<, S) COsh(1 -<)Uj(JS)d<. 

The expression for the transfer potential of the gaseous product is obtained by solving the differential equation 
(7) through the boundary condition (11) by the Laplace transform technique and thus 

_ 
&(s, ?I) = 

sinh(s/Lu#s 

x[(s/_&# cosh(s/Lu&* + (B3 - 1) sinh(s/Lu,,)*] 

1 [~.f4(5)+LudPn,(Si,.,,(4)+2Q1,x(5))+(Uw,)f(e3)] sinh(s/Lu$([ - l)d< 

x )I 1 
sinh(s/Lu,Y (r - 1) - cosh(s/Lu,)* (5 - 1) d5 + ___ 

x(sLu,)+ 

.?(&) sinh(slLu,,)* (5 -x) dc; (16) 

where the values of &, and &,, are determined by (14). 

The expression for the functions Qi(X, s) contains the terms hi(S) and f(&). the true nature of which is not yet 
defined in the context. Therefore, to determine the inverted form of these expressions we shall apply. 

(i) The inversion theorem of the complex analysis, where the expressions contain all the well-defined terms, 

(ii) The convolution theorem for terms of $i(s) and f(&). 

To apply the inversion theorem, we shall suppose that the expression in the denominator has only simple 
roots and its degree is always greater than that of the expressions in the numerator. Now the zeros of the 
denominator are obtained from 

This gives 
G(s) = ~(QI Pz - PI Qd = 0. 

(i) s = so = 0 (a zero root) 
(ii) s = s., where s, satisfies the equation: 

QIPz-PlQz = 0 
or more clearly 

Qnl Pnz - f’n~ Qnn = 0 (17) 
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where the hyperbolic sines and cosines are changed into sine and cosine by substituting s, = -pz. The values 
of pnj and Qnj are given by 

and 

P~j=/l”VjCOS&Vj+ -l+A,+(l-vjZ)- (18) 

Qnj= (a,+g) ( g-A,)Einpnvj. /.&VjCOS~,Vj+ (B,-1) (19) 

For determination of the residue, we need the value of the derivative of the denominator at s = -pi. This gives 

W.) = M” ; (20) 
where 

ICI. = vt Qnz& +ePn~Anz- ~‘2 Q~I.~~~-~IP~z&I. (21) 

The quantities A, and B, are 

COS /l, Vj + /ln Vj sin /.& Vj 

B, = 2A2 - &W)(l-(:) 
In 

)COS/&vj-(A2+~)/&vjSin/&vj. 

(224 

Wb) 

The inverted expression of the transfer potentials &(x, Fo) can be written as 

&(x,Fo) =2 f !!! 
x,=1 G s 

F0 [(Q x1 sinpnvvzx-Qn2 sin~.vlxh(u)-V',~ sin~(,u~x-P,~ sin~nv~4#d41 
0 

x exp( -&G) du + &l 
A, B2cKo, Dxw~mnf;(~)l+ (v;__;)Xn=l &” LfL 

X [(% - &$)(P,I sin k uz x - Pn2 sin p, v1 .w) - (R$ - Rn*2)(Q.I sin p,, v2 x - Qn2 sin p. v1 x)] 

sin~,v2x-P,2sinI*,vIx)exp(-~L.ZFo) 1 
sinp,v,x-Q,, sin/*,v2x)exp(-/$Fo) 1 

Lud GeKod F0 
x rwu + v2_u; 

s 

H,(l) 
1 0 

Bl 
’ -+! 2 L(P,, sinp.v2x-Pn2sinp,v,x)exp(-&Fo-u) du 

AI& x.=1 ~,$n --I 
+ 

Q2(x, Fo) = ~~~~~~oFo(IQ.~(1-v:)sinr.v2x-Q.2(l-v~)sin~~v~x]~,(u) 

EKO 
+ fi(l)-h(~)+~Ko,~z(l)-EKo.fi(O)-~f;(l)+~~~(l) +&& 1 m 
~n~l~i(sn:-&~~rP”l(l- 2) . v2 sln~,~~x-P,~(l- II?) sin&v1 x] -(R,*, - R.*J 

x [Q"I(~ -d) sin/*,v~x-Q~~(l -v?) sinp,ul xl> exp( -&Fo) 
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-&nf~[(l-u:)Q._ , sin p, c1 s - ( 1 - u$)QnI sin p,ul x] exp( - p;Fo) 
n n 

LudGeKod F” 

+(vf - &Ko,x 6 H1(Fo - *I) o 

EKO,X 
x 

[ 
~- 2 nEl $ [Pn1(1 - 2) II' sm~L,u2.Y-P,,2(l -of) sinp,oI x] exp( --~.“a) 1 du 

B2 

+ 
2LudGeKod F” 

(u: - u+Ko,x s 
H2(Fo-u) t ~[Q.l(l-o~)sin~~u~x-Qn2(1-u~)sin~~u,x]exp(-~~u)dtr 

O n=lA n * 

LudGeKod F” ’ - 

ss ~Komx o o 
HA<, u)(x-t)dudt+ 

LudGeKod F” 

s E~Ko;X o 
H3 (Fo - u) 

X 1 du 

+2 LudGeKod F” 

&‘Ko,$x 
BI 

s 0 
H,IFu-~)“~~~[Q.~(l-u~)sin~. I u x-Q,1(1-u$sin~,u2x]exp(-~~u)du 

" 

1 
+--- 

EKO,X 
H&c. Fo) - 

s 
xh(Od~+~Ko, 

s 1 1 fi(SWt . (24) 
0 

Equation (8) can directly be integrated as 

s 

FO 
&(x, Fo)-f,(x) = -LudGe f(WdU. (25) 

0 

To obtain the inverted expression of &(x, s), we have to obtain the roots of the equation 

(s/Lu,# cosh(s/Lud)* + (Bj - 1) sinh(s/Lu,# = 0. (26) 

which has an infinite set of simple zeros at s = s,. For a more precise value of s,, changing the hyperbolic sine 
and cosine into ordinary sine and cosine. we obtain 

s, = 
2. 

- vrn. 

where v, are the roots of the characteristic equation 

v 1’ 

-(Lud)lcos P+(B3-l)sin&=0 
(L%i)f 

and thus the inverted expression for the transfer potential &(x. s) becomes 

s FO cc 

04(” F”) = -2(Lud)f 

v, sin [vJ( LuJ*x] 

o “;I x{Bj COS[V,/(&#] [V,,,/(hd)*] sin[v,/(Lnd)+]j 

x exp(-v:Fo-u)&(u)du-2 
s 

F” ;o 
C 5B(M(5) exp( - v:Ro) d5 

y 0 m=l 

_?Lu,!pnd f 

FO 1 ss B(5)sin[~,/(L~(d,'x][~~,,,(5) +~e,,xb31 
X In=, 0 0 

x exp(-v:Fo-u)d<da-2$ $ 
F0 I 

ss Om-I 0 0 
B(<)f(&)dud5 +; 

s 
; C(x, 5, Fo)dS; 

(27) 

(28) 

where 
1 ' 

1 

R$= -l+A,+(l-u;)& _ 
! s 

R*(5)sin[(l-;)~,Uj]d4+ 

s 

R*(5)cos[(l_5)~"Uj]d5. 

m Pncj 0 0 

S$ = (B2-l)(l-$)&-A2 
> s 

i 
1 

m PnUj 0 

R*(C)sin[(I-S)r”uj]de+(~+az)SdR*(E)Cos[(l-C)B.uj]dS- 



Heat and mass transfer in sphere 357 

B(S) = ((1 - 83) sin[v,/(Wbl(5 - l)} - [~J@d*l ~os{[bdW~l (t - 1)) 
x {& co~[bdhd*l - [bJ&4fYl sin[v,/Wd)*]} 

ffI(FO) = m&~)--B*(s)l~ fwo) = ~-‘[JiIwh,(s)l, 
H3Fo) = z--‘[fi,x(e,) - (1 +BS).m3)1, fwo) = ~-1{-[f(e3)lx=l}> 

&(Fo) = r;‘[(s/Lu,)xf(e,)-xf”(83)-2f’(e,)l, 

&(Fo) = - Lu,,GeKod L-’ 

lij(S)= 5f(f(es) -& - 5.f”(&)- ?f’(fW siW1 - <)oj(s)* d5 
m 

and 
+ & 5,f(e,)-,~“(e3)-?f(e3) cosh(l - t)vj(s)*d5 

> 

F,(x, s) = - xfi (x) + eKo, fi (x). 

ANALYSIS OF THE RESULT 

For a n*th order chemical reaction equation (8) becomes 

a (x, ~0) 
aF0 

= -LudGe[&(x, Fo)y*, n* > 0. 

The solution (25) is thus modified as under: 

&(x, Fo) = f3(x)[1 -(n*- l)LudGeFof:“‘-l)(x)]-(“*ml)m’, n* # 1 (30) 

and 
0, (x, Fo) = f3 (x) + exp( - Lu,, GeFo), n* = 1. (31) 

Generally it is found that the chemical reactions of order greater than two are rare, and, in various power 
plants, the chemical reaction of order one takes place frequently. Therefore it is of common interest to reduce the 
complicated expressions (23), (24) and (28) for the first order chemical reaction. Further we shall suppose that the 
transfer potentials are initially uniform: 

0,(X, 0) = foi(constant). 

Therefore, the expressions (26), (27) and (31) reduce to 

f&(x, Fo) = ; $I ; OF0 [(P”Z 
s 

sinp”ur x-P,r sin ~.uzx)&(Fo- u)-(Qn2 sinnnul x - Q”r sin~,v2x)&(Fo - u)] 
n n 

x exp(-&)du-;;?- !I -$ 

x 11(Pn2B2-BLQnZ)joZ-ne:2A f 1 . 1 I 01 sin ,s~+[AlQ.~fol-(B,Q~l-B,P,,)fo,]sin~,v~x} 

x exp(--~,Z~o)-Ko~{l+[~1/~@~~1-&(21~1 
x [e, sin(Lu,, Ge)*vlx - & sin(Lu,, Ge)jvlx] exp( - Lu, GeFo)} 

+ 2A1 &iGeKOd f U/~,1(1n)(Q n2 sin P, v1 x - Qnl sin P, v2 $/[+ud Ge - 141 exp( - dFo); (32) 
n=l 
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P,z(l-o:)sin~,u,x-(l-u:)P,lsin~,v,x]~l(Fo-u) 

-[Qnl(l-t~:)sin~L,t’l~~-QQnl(l -u~)sin~L,t’Z~]~l(F~--ll): 

xexp(-&)d~-& $ ~[(p,~B,-Q~~B~)~o~-(l-ui)sinp,,c,r] 
m “1 II” 

x exp(-~,2Fo)-A1[Kod/X(Q2P~-&l132)][Q~(1-~:)Sin(~udG~)*U2~]-Q2(1-u~) 

x sin[(LudGe)*uIx] exp( -LudGeFo)+2A1 Lu~GeKod [p.$JLudGe-p,f)x]-’ 
n=l 

x [Qnz(l-u:)sin~L,ul~-QQnl(l -u:)sin~,,u~x] exp(-PiFo), (33) 

f&(x, Fo)-fo3 = exp( - LudGeFo) (34) 

04(x, Fo) = - l/x 2 
s 

FO 

A, sin[v,/(Lud)fx] expt - vl~)&(u) du 
m=, 0 

-F f (A,,,/$,) sin[xv,/(Lu&*] exp( - v:Fo) 
Ill=1 

+ (B3/WO){sin(Ge)*x/x[(Ge)* cos(Ge)f+(B3 - 1) sin(Ge)*]} 

x exp(-Lu,,GeFo)-(1/Wo)exp(-L~dGeFo)-(Lu~GeB3/Wox) 

x Cl A,/[v,f,(LudGe-v,$] sin[v,x/(Lq#] exp(-v;Fo) 

x (P,,,I Q,,,t-QmIP,,,J1 sin[v,x/(Lu,#] exp(-v;Fo-u)du 

-t ;I (~/~L,~.)C(BZP~~-Q~ZB~)D.~~O~+(Q.~B~-P.~B~)D~~~O~-A~~~~(Q.~D.~-Q.~D.~)] 

x i ~P.!GJ,J~] cos[~,lW~#l+ (B3 - 1) sin[dLudf]} -I exp( - dFo) 

x U’,I Qm2 -Qml P,,J’ exp( - ViFo) + W4LudGeKod Al “$I & 
n 

x (Q.1 D.z - Qn2 41) sin[~~xlWu#l expt - &Fo) 

x {[A/WPI cosb,lW#l + 0% - 1) sin[pnlWdi]} -’ - Ul.4LudGeKo~AI 

x ,z, b%Jv%Qm~Drn~ -Qml L)(Pm~ Qm2 - Qml P,z)-’ sin[v,xlWu#] exp(- $30). 

- (llx)A~ Kh(&b -01 &)(PI &--4&)-’ sin[(Ge)*x] [(Ge)*cos(Ge)*+(Bg- 1) sin(Ge)f]-’ 

x exp(- Lud GeFo) + 2Pnd f (p&J 
“=I 

X 

s 
f {[(Pnl mu2 - l/L ,) ud sin hu2x-(pn2 $/(u? - l/Lud)) sinho x]42(u) 

- [(Q~I a(4 - lkd)) sin p n UzX - (Q.2 U:/b: - l/Lud)) sin kbul x]4i(u)} 

X eXp( - /$FO - U) du + 2Pnd z (/&/+,t) 
n=l 

x ICVhP.2 -BI Qn2)fo2--4fo~ Qn2] [u?l(v?- l(Lud)*)] sin&u1 x 

+ [WI Q.1 - B2 Pn1)fo2 + AI .I& Q.11 [U&J: - l/hd)] sin A u2x) expf - ~,2Fo) 

+ 2AibiGeKodPki 5 (b’/*,$,) { [Qn2 $/Cuf - l/J%)] sinp,Ul x- [Q”l u$/(u: - l/&j)] sinpnu2 x) 
“=I 

X (LUdGe-pi) eXp(-fiu.ZFO)+ Al Pndh,, 
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x “!I i[&u?/(t? - l/Lu,)l sin(LudG ) e tt+ x-[& L~:/(o$- I/IA,,)] sin(LudGe)*uzx}(!ri Q2-P2Q1)-’ 

x exp(- LudGeFo) + [B3 Lud(d - l/Lu,)(u:- l/LuJ]-‘Pn,&omfo2. (35) 

where 

A, = 2v,(Lu,)*{Ba cos[v,/(Lu,)*] - [vm/(Lud)*] sin[v,/(Lu,)*]}-’ (354 

and 

D,j= Pn,(B,sin~,Uj+~c,UjCOS~,Uj)U:/[U:-1(LU,)*]+A,(~,UjCOS~~Uj-sinHUj). W) 

P,,,j, Qmj, D, and pj, Qj, Bj are written in the same form as Pnj, Qnj, D,; the characteristic root being replaced 
by v, and (Lu,, Ge)* respectively. 

Since the quantity of gaseous products of decomposition in the system is small in comparison to the quantity 
of the associated matter and the transfer of matter through the gaseous products is also inconsiderable, the 
term Pnd and the corresponding thermophysical coefficient A3 have no importance. In this case the expression 
for the potentials of heat (32) and for the associated matter (33) remain unchanged and the expression for 
gaseous products (35) takes the form: 

B3fo4 m 
A,sin[v,x/(Lu,)*] exp(-v~Fo-u)~3(u)du---_ mzl (A&f) sin [vm xI(Lu&*l 

Lu,,Ge m 
x exp( - vi Fo) + ~ w,x B3 c (A,/vk)(Lu,Ge-vi)-‘sin[v,x/(Lu,,)*] exp(-v;Fo) 

I?#=1 

- 1 exp( - Lu,GeFo). 1 (36) 

The expressions for transfer potentials &(x, Fo) contain a convergent series. Further, as the generalized time 
Fo increases, the terms of the series containing the exponential function of the criterion Fo diminish rapidly. 
For a certain value of Fo > Fol, the nature of the transfer potentials is mostly determined by retaining only 
first two terms of the series. 

For the constant prescribed fluxes, i.e. d,(Fo) = Ki,, &(Fo) = Ki, and &(Fo) = Kid*, where Ki are the 
Kirpichev criteria for the exchange of heat, matter and gaseous products respectively, the expressions (32), (33) 
and (36) reduce to : 

_ K. 
d 

1 +A & sin(LudGe)*u2x-~2sin(LudGe)*ul x 
1 

x(02& -pzm 1 exp( - LudGeFo) (37) 

Oz(x.F0)=2- 2 i 3(1-u$sinp.v,xexp(-PzFo) 
n=i j=l X 

_ A, KOd QlU -d) sinU&W*~~X-&(1 --$I sin(LudWtulx exp(_Lu,GeFo) 

.(Qzpl -t3,m 

(38) 

f&(x, Fo) - fo3 = exp( - Lud GeFo) (39) 

and 

04(x,Fo)=!$+i il$ Kid2-B3f04- 
LudGeB3 . v, 

m WO(LudGe-vi) 1 sin - x exp( - vf Fo) 
(LUI)j 

sin(Ge)*x 

x[(Ge)*cos(Ge)*+ (B3 - 1) sin(Ge)*] 1 exp( - LudGeFo); (40) 

where 

&I =--!-- P,z(Ki,-B2F02)+Qn2(Alfol+Bifo2-K&)-Al 
LudGeKod 

A*" 
Q 

Lu,,Ge-pi n2 1 
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The mean values of the transfer potentials in case of the sphere are obtained from the relation 

s 

1 

(H,(FO)) = 3 Oi(X, Fo)ds. (41) 
0 

The characteristic roots v, only affect the transfer potentials of the gaseous products &&Fo) and the 
characteristic roots pc, affect the transfer potentials of heat and matter. Since the gaseous products are formed 
only due to chemical reaction, the quantities KidI, v,, B3 and W. can be associated with the process of chemical 
reaction. The quantities LuI and Ge come together in the expressions of the transfer potentials of heat and 
matter and they govern the rate of chemical reaction; so they are responsible for the transfer of heat and mass 

due to thermal destruction. The quantity Ko, is the Kossovich criterion for the gaseous products and it defines 

the nature of the chemical reaction. For Kod > 0, it signifies that the reaction is endothermic and proceeds 
with the absorption of heat and for Kod < 0 it signifies that the reaction is of exothermic type and proceeds 

with the evolution of heat. 

Now we shall consider the approximate solutions for these transfer potentials applicable for small value of the 
generalized time, Fo. At small values of Fo, we have 

sinh rj st s cash ajs’ r 3 exp( vj sf). 

Under these approximations and restricting up to the terms of order s3j2 only, the expressions (14)-(16) for 
uniform initial distribution of transfer potentials give 

&(x. FOP-for = &x((N~~fr,~-A, N~~fol)(Fo)+ ierfc[ur 1 -x/Z(Fo)+] - (Ntr Fo,-N,,A,fo,)(Fo)+ 

x ierfc[r,l-x/2(Fo)*] +(N~lKi,-NzIKi,)(Fo)f 

x ierfc[u, 1-~/2(Fo)*] -(N3ZKi,-N22Kiq)(Fo)f 

x ierfc[ur 1 -x/2(Fo)*]} +KoJl -exp( -LudGeFo)] (42) 

0*(x, Fo) -.fb2 = ~{(N,if”,-A,N,,,)(l-i;:)(To)‘ierfc~- (N,,foz-A,Nzlfo,)(l-u:)(Fo)* 
m 

x ierfc[v, 1 -x/2(F0)~] +(NJ~ Kim--NzI Ki,)(l -~:)(Fo)~ ierfc[v, 1 -x/2(Fo)+] 

-(N32Ki,-N22Kiq)(l -v:)(F~)~ierfc[vr l-x/2(Fo)f]) (43) 

and 

&(x, Fo) = f (Kid2 - B3f04)(Lu,,Fo)f i erfc( 1 -/2/Lud Fo). (44) 

where 

and 
Nzj = [A, + (I -v~)/EKo,]v~, Nsj = (- i)j+ lcj 

M = (II: - v:)(Lu,,Jf/~Ko,,,. 

The expressions for these transfer potentials at the centre can be obtained by approximating sinh Uj(sX) = 
vj(s.~)*, thus the expressions (14)-( 16) become, 

1 
0, (0, Fn) - fo1 = (v$ _ “f) ___ {[(l-v: +eKo,AZ)Kiq-eKo,,,K&,] erfc[u,/2(Fo))] 

- [(1 -v~+EKo,,,A~)K~~-EKo,,,K~~] erfc[vJZ(Fo)*] 

+[EK~,B~~O~+(A~J~~-B,~O~)(~-V:+EKO,A~)]~~~~[~,/~(F~)~] 

- [~Ko,B~fo~+(A~fi~ -B,fo,)(l -u?f~Ko,A~)] erfc[v2/2(Fo)f]} 

+ Kod[ 1 - exp( - Lud GeFo)], (45) 
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f&(0, Fo) -fez = sKO 
m 

(b$_ v:) ((1 - uZ)[(l- u:+cKo,A1)Kiq-Ki,] erfc[uJ2(Fo)*] -(l -u?) 

x [(l -uS+&o,AZ)Kiq-Ki,] erfc[u,/2(Fo)f] 

+ [B2f02+(Alfol -B,fi2)(1 -o~+~K0,A~)](l-u~)erfc[u~/2(Fo)~] 

-[B2f~2+(Alf~l-B1fo2)(1-~~+~K~,AZ)](l-u~)erfc[u,/2(Fo)*]) (46) 
and 

C&(0, Fo) = ZLud(Kid2-B3f04) erfc[l/2(lu,Fo)t]. (47) 

The expressions (42) and (45) contain the terms like ierfcx which are sufficiently small. From the expression 

(42) neglecting the influence of these terms, we find that the excess of temperature over the initial distribution in 
the process is due to chemical reaction in the body and it varies almost linearly for small values of the generalised 

time. From the expression (45) it can be seen that the formation of the gaseous products is directly proportional 

to the square root of the generalised time, Fo at the surface of the body. 
Figure 1 shows the relation between (0, -f&)/K&, and Fo at the surface and centre of the sphere (Ki, = KiJ 

under the simple boundary conditions of second kind (A, = Bi = Bz = 0, = 0.5, Ko, = 1.2, A2 = P,, = 0.5. 

Vi = 0.9437, V, = 1.9346). The transfer potential of matter is unaffected with the chemical reaction for small 
values of the generalised time. In the small range of the generalised time, the matter is transferred from the 

surface speedily in comparison with the transfer of matter from the centre. Figures 2 and 3 show the 
distribution of matter and its gradient inside the body. From the figures, we observe that the transfer of matter 
from the layer nearer to the surface towards the surface occurs comparatively at a fast rate and the rate is slowed 
down as the layer moves farther from the surface. 

FIG. 1. Relation between (0, -fo#&,, and Fo for the surface FIG. 2. Distribution of matter in a sphere (Ki, = K,,). 
and centre of the sphere (&, = K,,). 

FIG. 3. Variation of gradient of matter in a sphere. 
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CONCLUSION 

The boundary conditions appearing in the equations (9)-(11) are of most general type and describe all 
possible interaction laws including radiation heat effect. By particularizing these thermophysical coefficients 
and surface fluxes in terms of known criteria, the specific interaction law of practical interest can be obtained. 
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